skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singla, Vasu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes solutions to detecting and mitigating the blatant replication and memorization of data used to train text-to-image generators, especially Stable Diffusion. The potential for diffusion models to reproduce copyrighted or private images without user knowledge poses significant ethical and legal challenges. For lawmakers, this highlights the need for clear guidelines and regulations around the use of such models, especially in commercial applications. 
    more » « less
  2. Data attribution methods play a crucial role in understanding machine learning models, providing insight into which training data points are most responsible for model outputs during deployment. However, current state-of-the-art approaches require a large ensemble of as many as 300,000 models to accurately attribute model predictions. These approaches therefore come at a high computational cost, are memory intensive, and are hard to scale to large models or datasets. In this work, we focus on a minimalist baseline, utilizing the feature space of a backbone pretrained via self-supervised learning to perform data attribution. Our method is model-agnostic and scales easily to large datasets. We show results on CIFAR-10 and ImageNet, achieving strong performance that rivals or outperforms state-of-the-art approaches at a fraction of the compute or memory cost. Contrary to prior work, our results reinforce the intuition that a model's prediction on one image is most impacted by visually similar training samples. Our approach serves as a simple and efficient baseline for data attribution on images. 
    more » « less